
Lecture 5 : More on Dynamic Programming

Justin Pearson

Justin Pearson Lecture 5 : More on Dynamic Programming 1 / 39



Today’s Topics

More dynamic programming

The complexity of the coin change dynamic program again.

Largest non-overlapping subset.

Knapsack via Dynamic programming

Justin Pearson Lecture 5 : More on Dynamic Programming 2 / 39



Coin change algorithm complexity

Adding two numbers

Consider the very simple algorithm:

function Add(x ,y)
return x + y

end function

What is the complexity?

Justin Pearson Lecture 5 : More on Dynamic Programming 3 / 39



Coin change algorithm complexity

Adding two numbers

The complexity is constant time, O(1) because we assume that
addition takes constant time.

When addition is implemented in a processor it uses a binary
representation of the numbers, and implements in hardware the same
algorithm that you learn in school.

What is the input to the problem? It is simply two numbers, so it is
constant space.

Justin Pearson Lecture 5 : More on Dynamic Programming 4 / 39



Coin change algorithm complexity

Adding two numbers

What is the complexity of:

Require: x ≥ 0
function Add(x ,y)

z ← y
while x > 0 do

z = z + 1
x = x − 1

end while
return z

end function

What does it do?

Justin Pearson Lecture 5 : More on Dynamic Programming 5 / 39



Coin change algorithm complexity

Adding two numbers

The complexity is O(x). It takes x steps for the while loop to finish.

Is this polynomial time or not?

It is not polynomial time. It is pseudo-polynomial time. The input is
constant space, but the time it takes depends on the value of n.

Justin Pearson Lecture 5 : More on Dynamic Programming 6 / 39



Coin change algorithm complexity

Adding two numbers

The complexity is O(x). It takes x steps for the while loop to finish.

Is this polynomial time or not?

It is not polynomial time. It is pseudo-polynomial time. The input is
constant space, but the time it takes depends on the value of n.

Justin Pearson Lecture 5 : More on Dynamic Programming 6 / 39



Coin change algorithm complexity

Pseudo vs polynomial time

Think about summing the numbers in a list. This takes linear time in
the input size. It does not depend on the values.

While our stupid addition algorithm depends on the value of the input.

If double a number it only takes 1 more bit to represent it.

Justin Pearson Lecture 5 : More on Dynamic Programming 7 / 39



Coin change algorithm complexity

Coin Change complexity

The complexity of the our coin change algorithm is linear in the value
that we are trying to change. So it takes at most 13 steps to work
out the change for 13SEK .

With dynamic programming your often have to divide into smaller
parameters that depend on the values of input parameters, and this
gives you a pseudo-polynomial time dynamic programming.

Pseudo-polynomial is good when your values do not get to large.

Justin Pearson Lecture 5 : More on Dynamic Programming 8 / 39



Maximum non-overlapping intervals

Maximum non-overlapping intervals

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

The goal is to find a largest subset
of the tasks that do not overlap.

In this case it is the set of
tasks 1, 2, 4 and 6.

We will assume that the tasks are
sorted in by finishing time. This
adds and O(n log(n)) overhead to
the algorithm.

Justin Pearson Lecture 5 : More on Dynamic Programming 9 / 39



Maximum non-overlapping intervals

Maximum non-overlapping intervals

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

Definition

Let p(i) to be the largest index j
such that job i is non-overlapping
with j , and 0 if there is no such job.

p(1) = 0.

p(2) = 1.

p(3) = 0.

p(4) = 3.

p(5) = 1.

p(6) = 4.

Justin Pearson Lecture 5 : More on Dynamic Programming 10 / 39



Maximum non-overlapping intervals

Dynamic Programming Towards the Bellman Equation

We are going to define Opt(i) that is the maximum number of
non-overlapping jobs that you can schedule using only the jobs 1 . . . i .

Notice that are first solving the easier problem: How many jobs can I
schedule? Rather than working out what the jobs are. Once we have the
dynamic program we can work backwards from the solution to work out
what jobs are scheduled.

We are interested in Opt(n), but we need to work out the relationship
between Opt(i) and Opt(i − 1).

Justin Pearson Lecture 5 : More on Dynamic Programming 11 / 39



Maximum non-overlapping intervals

Why is sorting the jobs important?

We sorted the jobs by finish time. This means that when we look at
Opt(i). We are only considering the jobs that finish before job i ’s finish
time.

This means that when we are trying to work out Opt(i), we only have to
consider Opt(1), . . . ,Opt(i − 1).

Justin Pearson Lecture 5 : More on Dynamic Programming 12 / 39



Maximum non-overlapping intervals

Dynamic Programming Towards the Bellman Equation

Let’s assume that we know what Opt(i − 1) is. There are two things that
can happen to job i :

1 We do not use job i , so Opt(i) equals Opt(i − 1).

2 If use job i , then the previous choice Opt(i − 1) might have jobs that
overlap with job j . This means that we have to go back to Opt(p(i))
that is the maximum index for which the job does not clash with job i .

Justin Pearson Lecture 5 : More on Dynamic Programming 13 / 39



Maximum non-overlapping intervals

Dynamic Programming the Bellman Equation

The consideration on the previous slide gives the Bellman Equation

Opt(i) =

{
0 if i = 0

max(Opt(i − 1), 1 + Opt(p(i))) if i > 0

Notice that 1 + Opt(p(i))) we use job j but we have to backtrack to job
p(j). p(i) < j and so this should be already computed when we implement
the dynamic program.

Justin Pearson Lecture 5 : More on Dynamic Programming 14 / 39



Maximum non-overlapping intervals

The Bellman Equation Example

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

Opt(i) is
max(Opt(i − 1), 1 + Opt(p(i))) and
p(1) = p(3) = 0, p(2) = p(5) = 1,
p(4) = 3, , p(6) = 4 so Opt(1) = 1.

Opt(2) = max(Opt(1), 1 +
Opt(p(2))) = 2.

Opt(3) =
max(2, 1 + Opt(0)) = 2.

Opt(4) =
max(2, 1 + Opt(p(4))) = 3.

Opt(5) =
max(2, 1 + Opt(p(5)) = 3

Opt(6) =
max(3, 1 + Opt(p(6))) = 4

Justin Pearson Lecture 5 : More on Dynamic Programming 15 / 39



Maximum non-overlapping intervals

The Bellman Equation Example

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

Once you have computed Opt(6)
equals 3, you can work back to get
the schedule.
Opt(6) = 1 + Opt(p(6) = 4)) ,
Opt(4) = 1 + Opt(p(4) = 2),
Opt(2) = 1 + Opt(1).
So we use jobs 1, 2, 4, 6.

Justin Pearson Lecture 5 : More on Dynamic Programming 16 / 39



Maximum non-overlapping intervals

The complexity of non-overlapping intervals/jobs

Assume that we have n jobs. The algorithm has two stages:

1 Sort the jobs by finish time: O(n log(n)).

2 Compute Opt(n) by implementing the Dynamic programming using
caching or a loop. Worst case complexity O(n).

So the overall complexity is O(n log(n) + n) = O(n log(n)). This is a true
polynomial time dynamic programming algorithm is only depends on the
input size n.

The sorting trick allows you to replace the question, what happens before
time t, to what happens before job/interval i?

Justin Pearson Lecture 5 : More on Dynamic Programming 17 / 39



Weighted non-overlapping intervals

Non-Overlapping Weighted Interval Problem

Nearly the same setup as before, a number of jobs/task :

si , start time of task i ,

fi , finish time of task i ,

wi weight of task i .

As before we assume that f1 ≤ f2 ≤ · · · ≤ fn.

Now the goal is to find a set of non-overlapping tasks {t1, . . . , tk} such
that the sum is

wt 1 + · · ·+ wtk

maximised.

Justin Pearson Lecture 5 : More on Dynamic Programming 18 / 39



Weighted non-overlapping intervals

Non-Overlapping Weighted Interval Problem

The Bellman equation needs a slight modification from before:

Opt(i) =

{
0 if i = 0

max(Opt(i − 1),wi +Opt(p(i))) if i > 0

If you don’t use job i , then the optimum does not change. If you use job i ,
then you have weight wi , but you have to backtrack to job p(i) as before.

Justin Pearson Lecture 5 : More on Dynamic Programming 19 / 39



Weighted non-overlapping intervals

Important Strategy when using Dynamic Programming

Do not try to solve the assignment problem, try to solve the optimisation
problem:

How many coins do you need to give the minimum change?

What is the maximum number of non-overlapping jobs that you can
pick.

What is the maximum weight set of non-overlapping jobs that you
can pick.

(see next problem) what is the largest set of items you can pick that
maximises the value but stays withing a weight limit w .

Once you solve this problem you can then find the assignment by either
going backwards through your dynamic program or using additional data
structures to keep track of what choices you made. This really helps in
your first assignment.

Justin Pearson Lecture 5 : More on Dynamic Programming 20 / 39



Knapsack

A Knapsack1

Knapsack is just a fancy word for a backpack. Typically the old type of
backpack that was used in the army (Ränsel p̊a Svenska).

1Picture taken form Wikipedia
Justin Pearson Lecture 5 : More on Dynamic Programming 21 / 39



Knapsack

The Knapsack problem

You have a set of items each with a value, vi , and a weight, wi , you want
to find a subset of the items that maximises the value but stays within a
weight limit w .

i vi wi

1 100 SEK 1kg
2 600 SEK 2kg
3 180 SEK 5kg
4 220 SEK 6kg
5 280 SEK 7kg

For example : the subset {1, 2, 5} has value 980 SEK and weight 10kg.

Justin Pearson Lecture 5 : More on Dynamic Programming 22 / 39



Knapsack

What do we optimise?

This problem is a little more complicated there are a few obvious choices:

1 Opt(w) the optimum value of the knapsack problem with weight w .

2 Opt(i) the optimum value of the knapsack using only the first i
elements.

3 Opt(i ,w) the optimum value of the knapsack using only the first i
elements subject to the weight limit w .

Somehow we have get the value w in there and have suitable
sub-problems. If I pick item i , it has weight wi so I solve the sub-problem
with weight w − wi .

This means that the third choice seems the best thing to try.

Justin Pearson Lecture 5 : More on Dynamic Programming 23 / 39



Knapsack

Bellman equation for Knapsack

Definition

Opt(i ,w) the optimal value of the knapsack problem using items 1, . . . , i
subject to the weight limit w .

The goal is to hit the weight limit w .
As before two cases :

1 Opt(i ,w) does not select item i , so Opt(i ,w) selects the best of
{1, 2, . . . , i − 1} subject to weight limit w .

2 Opt(i ,w) selects item i , with value vi , and a new weight limit w − wi

we then select the best of {1, 2, . . . , i − 1} subject to the weight limit
w − wi .

We do not select an item if it too heavy.

Justin Pearson Lecture 5 : More on Dynamic Programming 24 / 39



Knapsack

Bellman equation for Knapsack

This gives

Opt(i ,w) =


0 if i = 0

Opt(i − 1,w) if wi > w

max(Opt(i − 1,w), vi +Opt(i − 1,w − wi )) otherwise.

Once you have the Bellman equation you can then implement it as a
top-down (with caching) or bottom up dynamic programming.

It is always (as we will do now) worth working out the bottom up program
as it gives you a better idea of the complexity of the problem.

Justin Pearson Lecture 5 : More on Dynamic Programming 25 / 39



Knapsack

Modified Example (easier to fit on a slide)

i vi wi

1 1 1kg
2 6 2kg
3 18 3kg
4 22 5kg

Let solve it for weight limit 5kg.

Justin Pearson Lecture 5 : More on Dynamic Programming 26 / 39



Knapsack

Opt(i ,w) for our example

We are trying to compute Opt(4, 5). We do this bottom using the
Bellman equation from before.
If you do not pick any items then you satisfy the weight limit, but you
have value 0.

0 1 2 3 4 5

{} 0 0 0 0 0 0

Justin Pearson Lecture 5 : More on Dynamic Programming 27 / 39



Knapsack

We are trying to compute Opt(4, 5). We do this bottom using the
Bellman equation from before.
The next row is simple if you just use item 1, then it has weight 1.

0 1 2 3 4 5

{} 0 0 0 0 0 0
{1} 0 1 1 1 1 1

Justin Pearson Lecture 5 : More on Dynamic Programming 28 / 39



Knapsack

We are trying to compute Opt(4, 5). We do this bottom using the
Bellman equation from before.
Continuing we get :

0 1 2 3 4 5

{} 0 0 0 0 0 0
{1} 0 1 1 1 1 1
{1, 2} 0 1
{1, 2, 3} 0 1
{1, . . . , 4} 0 1

Justin Pearson Lecture 5 : More on Dynamic Programming 29 / 39



Knapsack

We are trying to compute Opt(4, 5). We do this bottom using the
Bellman equation from before.
Interesting things start happening when we look at Opt(2, 2) we get that
Opt(2, 2) = v2 +Opt(1, 2− w2) = 6 + 0.

0 1 2 3 4 5

{} 0 0 0 0 0 0
{1} 0 1 1 1 1 1
{1, 2} 0 1 6 7 7 7
{1, 2, 3} 0 1
{1, . . . , 4} 0 1

Justin Pearson Lecture 5 : More on Dynamic Programming 30 / 39



Knapsack

We are trying to compute Opt(4, 5). We do this bottom using the
Bellman equation from before.
Opt(3, 5) = v3 +Opt(2, 5− 3)

0 1 2 3 4 5

{} 0 0 0 0 0 0
{1} 0 1 1 1 1 1
{1, 2} 0 1 6 7 7 7
{1, 2, 3} 0 1 6 18 19 24

Justin Pearson Lecture 5 : More on Dynamic Programming 31 / 39



Knapsack

We are trying to compute Opt(4, 5). We do this bottom using the
Bellman equation from before.
Opt(3, 5) = v3 +Opt(2, 5− 3)

0 1 2 3 4 5

{} 0 0 0 0 0 0
{1} 0 1 1 1 1 1
{1, 2} 0 1 6 7 7 7
{1, 2, 3} 0 1 6 18 19 24
{1, . . . , 4} 0 1 6 18 22 24

Working back from our solution we get that
Opt(4, 5) = Opt(3, 5) = v3 +Opt(2, 2) = v + 3 + v2 +Opt(1, 0)
So we are using items 3 and 2.

Justin Pearson Lecture 5 : More on Dynamic Programming 32 / 39



Knapsack

What is the complexity of Knapsack?

Bottom up has given a vital clue to understanding the complexity of the
problem.

Given an input, what is the maximum weight input?

If W is the maximum weight value in our inputs then we have to make a
table of dimensions n by W in the worst case. In the worst case the
maximum weight we can carry is nW . Set every weight to W .

Constructing each entry in the table is constant time, so the complexity is

Θ(nW )

Again this is pseudo-polynomial.

Justin Pearson Lecture 5 : More on Dynamic Programming 33 / 39



Knapsack

Knapsack

A lot of problems are special cases of the knapsack problem, such as the
coin change problem.

But be careful, sometimes there is a simpler dynamic program that solves
what you are looking for.

Justin Pearson Lecture 5 : More on Dynamic Programming 34 / 39



Knapsack

Longest Increasing Sub-Sequence

One last polynomial time dynamic program.
Given a sequence of integers:

1, 3, 2, 10, 2, 11, 5

Find a longest increasing sub-sequence.

1, 3, 2, 10, 2, 11, 5

Justin Pearson Lecture 5 : More on Dynamic Programming 35 / 39



Knapsack

Longest Increasing Sub-Sequence

Let denote a sequence of length n by s1, . . . , sn−1 Again solve the easier
problem: What is the length lmax of a longest increasing sub-sequence:

lmax(i) = 1 + max{lmax(j) | 1 ≤ j < i and sj < si}

If you set the maximum of an empty set to be 0, then if no such j exists
satisfying the set comprehension above you get lmax(i) = 1.

Justin Pearson Lecture 5 : More on Dynamic Programming 36 / 39



Knapsack

Longest Increasing Sub-Sequence

So you go through all the smaller j , look at lmax(j) and pick that value. If
you implement with caching or bottom up you get O(n2) complexity
because for each i you look at the values of lmax(1), . . . , lmax(i − 1).

Again solve the easier problem: What is the length? Then you can find the
solution by going backwards from your solution.

Justin Pearson Lecture 5 : More on Dynamic Programming 37 / 39



Knapsack

Summary

Try to solve the harder problem, how to I maximize or minimize some
value or sometimes does there exist a solution. By backtracking
through your dynamic program’s table you can find a solution.

Sometimes Dynamic programs are pseudo-polynomial. The
complexity is polynomial (often linear) in some parameter of the
input, rather than the input size. Pseudo-polynomial is still good for
low values of the parameter.

In a dynamic program you are often trying to select a subset of items.
You can often use the trick of considering the first i items to get your
dynamic program. Sometimes you need to sort them, sometimes you
don’t, but you have to think very hard about this step to see if it is
correct.

Justin Pearson Lecture 5 : More on Dynamic Programming 38 / 39



Knapsack

Summary

Dynamic programming is not simple recursion, sometimes you need to
use n-dimensional tables (knapsack) where one of the argument is a
value rather than decomposing the problem. For example, the weight.

If you are considering the first i − 1 items, then in the next step you
have the choice:

Use item i
Don’t use item i .

With each choice, you are working out the effect on the value that
you are trying to maximize.

Dynamic programming is a powerful technique for getting efficient
algorithms. Working out the correct decomposition is often hard. Practice
makes perfect. The internet is full of examples, and problem sets.

Justin Pearson Lecture 5 : More on Dynamic Programming 39 / 39


	Coin change algorithm complexity
	Maximum non-overlapping intervals
	Weighted non-overlapping intervals
	Knapsack

